Digital Signal 1 (T1)

Source: Wikipedia: Digital Signal 1

Digital Signal 1

From Wikipedia, the free encyclopedia
Jump to: navigation, search
"DS-1" redirects here. For other uses, see DS1.

Digital signal 1 (DS1, also known as T1, sometimes "DS-1") is a T-carrier signaling scheme devised by Bell Labs.[1] DS1 is a widely used standard in telecommunications in North America and Japan to transmit voice and data between devices. E1 is used in place of T1 outside of North America, Japan, and South Korea. Technically, DS1 is the logical bit pattern used over a physical T1 line; however, the terms "DS1" and "T1" are often used interchangeably.

* 1 Bandwidth
* 2 DS1 frame synchronization
* 3 Connectivity and alarms
o 3.1 Alarms
* 4 Inband T1 versus T1 PRI
* 5 Origin of name
* 6 Alternative technologies
* 7 Semiconductor
* 8 Examples
* 9 Notes and references
* 10 See also

[edit] Bandwidth

A DS1 circuit is made up of twenty-four 8-bit channels (also known as timeslots or DS0s), each channel being a 64 kbit/s DS0 multiplexed carrier circuit[2]. A DS1 is also a full-duplex circuit, which means the circuit transmits and receives 1.544 Mbit/s concurrently. A total of 1.536 Mbit/s of bandwidth is achieved by sampling each of the twenty-four 8-bit DS0s 8000 times per second. This sampling is referred to as 8-kHz sampling (See Pulse-code modulation). An additional 8 kbit/s of overhead is obtained from the placement of one framing bit, for a total of 1.544 Mbit/s, calculated as follows:

\left( 8\,\frac{\mathrm{bits}}{\mathrm{channel}} \times 24\,\frac{\mathrm{channels}}{\mathrm{frame}} + 1\,\frac{\mathrm{framing\ bit}}{\mathrm{frame}} \right) \times 8000\,\frac{\mathrm{frames}}{\mathrm{second}} = 1544000\,\frac{\mathrm{bits}}{\mathrm{second}} = 1.544\,\frac{\mathrm{Mbit}}{\mathrm{second}}.

[edit] DS1 frame synchronization

Frame synchronization is necessary to identify the timeslots within each 24-channel frame. Synchronization takes place by allocating a framing, or 193rd, bit. This results in 8 kbit/s of framing data, for each DS1. Because this 8-kbit/s channel is used by the transmitting equipment as overhead, only 1.536 Mbit/s is actually passed on to the user. Two types of framing schemes are Super Frame (SF) and Extended Super Frame (ESF). A Super Frame consists of twelve consecutive 193-bit frames, whereas an Extended Super Frame consists of twenty-four consecutive 193-bit frames of data. Due to the unique bit sequences exchanged, the framing schemes are not compatible with each other. These two types of framing (SF and ESF) use their 8 kbit/s framing channel in different ways.
[edit] Connectivity and alarms
This section does not cite any references or sources.
Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (September 2008)

Connectivity refers to the ability of the digital carrier to carry customer data from either end to the other. In some cases, the connectivity may be lost in one direction and maintained in the other. In all cases, the terminal equipment, i.e., the equipment that marks the endpoints of the DS1, defines the connection by the quality of the received framing pattern.
[edit] Alarms

Alarms are normally produced by the receiving terminal equipment when the framing is compromised. There are three defined alarm indication signal states, identified by a legacy color scheme: red, yellow and blue.

Red alarm indicates the alarming equipment is unable to recover the framing reliably. Corruption or loss of the signal will produce “red alarm.” Connectivity has been lost toward the alarming equipment. There is no knowledge of connectivity toward the far end.

Yellow alarm indicates reception from the far end of a data or framing pattern that reports the far end is in “red alarm.” Red alarm and yellow alarm states cannot exist simultaneously on a single piece of equipment because the “yellow alarm” pattern must be received within a framed signal. For ESF framed signals, all bits of the Data Link channel within the framing are set to data “0”; the customer data is undisturbed. For D4 framed signals, the pattern sent to indicate to the far end that inbound framing has been lost is a coercion of the framed data so that bit 2 of each timeslot is set to data “0” for three consecutive frames. Although this works well for voice circuits, the data pattern can occur frequently when carrying digital data and will produce transient “yellow alarm” states, making ESF a better alternative for data circuits.

Blue alarm indicates a disruption in the communication path between the terminal equipment. Communication devices, such as repeaters and multiplexers must see and produce line activity at the DS1 rate. If no signal is received that fills those requirements, the communications device produces a series of pulses on its output side to maintain the required activity. Those pulses represent data “1” in all data and all framing time slots. This signal maintains communication integrity while providing no framing to the terminal equipment. The receiving equipment displays a “red alarm” and sends the signal for “yellow alarm” to the far end because it has no framing, but at maintenance interfaces the equipment will report “AIS” or Alarm Indication Signal. AIS is also called “all ones” because of the data and framing pattern.

These alarm states are also lumped under the term Carrier Group Alarm (CGA). The meaning of CGA is that connectivity on the digital carrier has failed. The result of the CGA condition varies depending on the equipment function. Voice equipment typically coerces the robbed bits for signaling to a state that will result in the far end properly handling the condition, while applying an often different state to the customer equipment connected to the alarmed equipment. Simultaneously, the customer data is often coerced to a 0x7F pattern, signifying a zero-voltage condition on voice equipment. Data equipment usually passes whatever data may be present, if any, leaving it to the customer equipment to deal with the condition.
[edit] Inband T1 versus T1 PRI

Additionally, for voice T1s there are two main types: so-called "plain" or Inband T1s and PRI (Primary Rate Interface). While both carry voice telephone calls in similar fashion, PRIs are commonly used in call centers and provide not only the 23 actual usable telephone lines (Known as "B" channels) but also a 24th line (Known as the "D" channel for Delta[3]) that carries signaling information. This special "D" channel carries: Caller ID (CID) and Automatic Number Identification (ANI) data, required channel type (usually a B, or Bearer channel), call handle, DNIS info, requested channel number and a request for response.[4]

Inband T1s are also capable of carrying CID and ANI information if they are configured by the carrier to do so but PRIs handle this more efficiently. While an Inband T1 seemingly has a slight advantage due to 24 lines being available to make calls (as opposed to a PRI that has 23), each channel in an Inband T1 must perform its own setup and tear-down of each call. A PRI uses the 24th channel as a data channel to perform all the overhead operations of the other 23 channels (including CID and ANI). Although an inband T1 has 24 channels, the 23 channel PRI can set up more calls faster due to the dedicated 24th signalling channel (D Channel).
[edit] Origin of name
This section does not cite any references or sources.
Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2007)

The name T1 came from the carrier letter assigned by AT&T to the technology. Essentially, the "T" is a part number that was assigned by AT&T. Just as there is the generally known L-carrier and N-carrier systems, T-carrier was next letter available and T1 is the first level in the hierarchy. DS-1 meant "Digital Service - Level 1", and had to do with the service to be sent (originally 24 digitized voice channels over the T1). The terms T1 and DS1 have become synonymous and include a plethora of different services from voice to data to clear-channel pipes. The line speed is always consistent at 1.544 Mbit/s, but the payload can vary greatly.
[edit] Alternative technologies

Dark Fiber: Dark fiber refers to unused fibers, available for use. Dark fiber has been, and still is, available for sale on the wholesale market for both metro and wide area links, but it may not be available in all markets or city pairs.

Dark fiber capacity is typically used by network operators to build SONET and dense wavelength division multiplexing (DWDM) networks, usually involving meshes of self-healing rings. Now, it is also used by end-user enterprises to expand Ethernet local area networks, especially since the adoption of IEEE standards for Gigabit Ethernet and 10 gigabit Ethernet over single-mode fiber. Running Ethernet networks between geographically separated buildings is a practice known as "WAN elimination".
[edit] Semiconductor

The T1/E1 protocol is implemented as a "line interface unit" in silicon. The semiconductor chip contains a decoder/encoder, loop backs, jitter attenuators, receivers, and drivers. Additionally, there are usually multiple interfaces and they are labeled as dual, quad, octal, etc., depending upon the number.

The transceiver chip's primary purpose it to retrieve information from the "line", i.e., the conductive line that transversed distance, by receiving the pulses and converting the signal which has been subjected to noise, jitter, and other interference, to a clean digital pulse on the other interface of the chip.
[edit] Examples

The global telephone network (also known as the Public Switched Telephone Network or PSTN).
[edit] Notes and references

1. ^ "How Bell Ran in Digital Communications" September 1996, webpage: BYTE-Bell: Bell Labs scientists developed a time-division multiplexing scheme, T1.
2. ^ Just Circuits - T1 Made Simple
3. ^ Versadial, Call recording encyclopedia, last accessed 19 Apr 2007
4. ^ Newton, H: "Newton's telecom dictionary", page 225. CMP books, 2004

[edit] See also

* T-carrier
* E-carrier
* Time-division multiple access
* Pulse-code modulation
* Federal Standard 1037C
* DS1 Encoding schemes: B8ZS, HDB3, AMI
* Line code
* Time-division multiplexing
* Multiplexing
* Physical layer
* Data frame
* Quantization (signal processing)
* Digital Signal 3
* Digital Signal 0

Retrieved from ""
Categories: Computer and telecommunication standards | Multiplexing
Hidden categories: Articles needing additional references from September 2008 | All articles needing additional references | Articles needing additional references from November 2007
Personal tools

* New features
* Log in / create account


* Article
* Discussion



* Read
* Edit
* View history



* Main page
* Contents
* Featured content
* Current events
* Random article


* About Wikipedia
* Community portal
* Recent changes
* Contact Wikipedia
* Donate to Wikipedia
* Help


* What links here
* Related changes
* Upload file
* Special pages
* Permanent link
* Cite this page


* Create a book
* Download as PDF
* Printable version


* Deutsch
* Español
* Bahasa Indonesia
* עברית
* Nederlands
* Polski
* Português
* Русский
* Basa Sunda

* This page was last modified on 12 May 2010 at 03:13.
* Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
* Contact us

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License